BRITISH DIVISION OF THE INTERNATIONAL ACADEMY OF PATHOLOGY

SYMPOSIUM ON UPPER GI and PANCREATOBILIARY

2-3 December 2016: Royal Institute of British Architects, London

Reporting pancreatic cancer resections

after neoadjuvant therapy

C Verbeke

Indications for neoadjuvant therapy (NAT)

• Borderline resectable

= limited involvement of veins (SMV, PV) and/or arteries (HA, SMA)

- Locally advanced
 = beyond resectable
- Primary resectable
 - \rightarrow clinical trials:
 - disease is already systemic ("occult metastasis")
 - proportion of patients cannot be treated adjuvantly

Neoadjuvant therapy (NAT)

- Chemotherapy
 - Gemcitabine
 - FOLFIRINOX
 - Folinic acid
 - 5-FU
 - Irinotecan
 - Oxaliplatin
- (Chemoradiotherapy)

Surgical procedures following NAT

• Standard resection:

- Whipple's/pylorus-preserving pancreatectomy
- Distal pancreatectomy
- Total pancreatectomy

• Extended resection: standard +

- Blood vessels:
 - superior mesenteric vein (SMV) / portal vein (PV)
 - hepatic artery
 - superior mesenteric artery (SMA)
- Small bowel, colon
- Stomach
- Adrenal, kidney

Macroscopic examination

- Dissection
- Examination
- Sampling

Specimen dissection

- Standard specimens:
 - Whipple's: axial slicing

Specimen dissection

- Standard specimens:
 - Whipple's: axial slicing
 - Distal pancreatectomy: sagittal slicing
 - Total pancreatectomy: combined axial + sagittal slicing

Specimen dissection

- Standard specimens:
 - Whipple's: axial slicing
 - Distal pancreatectomy: sagittal slicing
 - Total pancreatectomy: combined axial + sagittal slicing
- Extended resection specimens:
 - Display relationship between tumour and additionally resected structures

Full segment of SMV

Borderline resectable pancreatic cancer (BRPC)

Campbell & Verbeke – Springer 2013

Primary resectable pancreatic cancer (PRPC)

Macroscopic inspection

- Complex specimens
- Distorted anatomy

Macroscopic examination

- Complex specimens
- Distorted anatomy
- Blurred tumour outlines

Pancreatic cancer (after NAT)

Sampling

- Extensive (sub-)total
- "New", relevant margins of and around additionally resected structures

Microscopic examination

- Treatment-induced changes
- Staging
- Tumour regression grading
- Margin status

Treatment-induced changes of the tumour

- Necrosis: rare
- Reduction of tumour cell mass
- Change in tumour morphology

Common histological features

Cytoplasmic eosinophilia

- Hyperchromasia
- Pyknosis
- Bizarre nuclei

Clear cell change

- Wrinkled nuclei
- Voluminous clear cytoplasm
- 'Lipoblast-like' cells
- 'Signet ring-like' cells Tumours accompanied by
- Mucin pools
- Foamy macrophages
- Foreign body-type giant cells

Uncommon histological features

Oncocytic/'oncocyte-like' change

- Polygonal cells
- Eosinophilic, granular cytoplasm
- Round hyperchromatic nuclei
- Cherry red, prominent nuclei

Rhabdoid change

- Globular, hyaline intracytoplasmic inclusion
- Highlighted by cytokeratin staining
- Also known as 'cytokeratin aggresomes'

Squamous metaplasia/differentiation

Treatment-induced changes of the tumour

- Necrosis: rare ٠
- Reduction of tumour cell mass •
- ٠
- Stroma: ٠
 - fibromyxoid
 - dense, keloid-like
 - cellular, nodular fasciitis-like

Change in tumour morphology → No grading of tumour differentiation

Treatment-induced changes of the tumour

- Necrosis: rare
- Reduction of tumour cell mass
- Change in tumour morphology
- Stroma:
 - fibromyxoid
 - dense, keloid-like
 - cellular, nodular fasciitis-like
- Tumour-associated changes:
 - mucin pools
 - foamy macrophages
 - inflammation?

\rightarrow No grading of tumour differentiation

Treatment-induced changes in non-neoplastic tissues

- Blood vessels:
 - myxohyaline intimal proliferation
 - elastosis/elastic degeneration
- Nerve bundles: hypertrophy
- Acinar parenchyma: atrophy

Treatment-induced changes in non-neoplastic tissues

- Blood vessels:
 - myxohyaline intimal proliferation
 - elastosis/elastic degeneration
- Nerve bundles: hypertrophy
- Acinar parenchyma: atrophy
- Pancreatic islets:
 - scattered, "single file"
 - hypertrophic
 - occasionally "intraneural" location

Treatment-induced changes in non-neoplastic tissues

- Blood vessels:
 - myxohyaline intimal proliferation
 - elastosis/elastic degeneration
- Nerve bundles: hypertrophy
- Acinar parenchyma: atrophy
- Pancreatic islets:
 - scattered, "single file"
 - hypertrophic
 - occasionally "intraneural" location
- Pancreatic ducts:
 - irregular shape, cytological atypia (mild)
 - eosinophilic cytoplasm

Tumour staging (yp-)

- T:
 - evaluated as usual

Before neoadjuvant therapy:

- 45 x 38 mm
- pT3

After neoadjuvant therapy:

- 42 x 36 mm
- ypT3 → *debulking*

Tumour staging (yp-)

- T:
 - evaluated as usual
 - most still ypT3
- N:
 - staging as usual
 - often lower lymph node yield

Tumour regression grading

- **Important:** evaluation of effect of treatment
- **Confusing:** various grading systems

Tumour regression grading systems for PDAC

	Ishikawa et al. [28]	Evans et al. [29]	White et al. [30]
Criterion	Proportion severely damaged cancer cells	Percentage tumour cell destruction/ viable cancer cells	Percentage viable cancer cells
Grade	I = <1/3 II = 1/3-2/3 III > 2/3	I = 0–9% tumour cell destruction IIa = 10–50% tumour cell destruction IIb = 51–90% tumour cell destruction III = <10% viable cancer cells IV = 0% viable cancer cells	Large = >90% Moderate = 10-90% Small = 0 to <10%

Comparison of residual with original tumour volume

Before neoadjuvant therapy:

- 45 x 38 mm
- pT3

After neoadjuvant therapy:

- 42 x 36 mm
- ypT3 → *debulking*

Tumour regression grading systems for PDAC

	CAP [31]
Criterion	Extent residual cancer
Grade	0 = Complete response: no residual cancer cells I = Marked response: minimal residual cancer cells (single/ small groups of cancer cells) II = Moderate response: cancer cells outgrown by fibrosis III = Poor/no response: extensive residual cancer

Abbreviation: CAP - College of American Pathologists.

Comparison of residual tumour volume with (treatment-induced) fibrosis

After neoadjuvant therapy

No neoadjuvant therapy

Verbeke et al. – Cancer Treatm Rev 2015

Tumour regression grading

- **Important:** evaluation of effect of treatment
- **Confusing:** various grading systems
- **Difficult:** inhomogeneous tumour regression

Tumour regression grading

- **Important:** evaluation of effect of treatment
- **Confusing:** various grading systems
- **Difficult:** inhomogeneous tumour regression
 - \rightarrow Importance of extensive sampling

TRG system – Chatterjee et al. Cancer 2012

Grade	Residual cancer
0	None
1	Minimal (single cells or small groups; < 5%)
2	> 5%

Encompasses CAP grade 2 and 3

Lee et al. AJSP 2016:

- Significant difference in OS and DFS between Chatterjee grade 0-1 and grade 2
- No difference in OS or DFS between CAP grade 2 and 3
- Too few patients with grade 0 (1.8%) to evaluate possible difference in survival between grade 0 and grade 1

Margin status following NAT

- R1 rate: often used as outcome measure for effect of neoadjuvant treatment
- Detection rate of R1 depends on extent of sampling
- Definition of R1 based on 1 mm clearance does not apply

- → clearance > 1 mm ≠ R0

Conclusions

- Tumour regression is often inhomogeneous throughout a tumour
- Tumour regression grading is often difficult
- Complete response is extremely rare
- Tumour regression does usually not lead to down-staging
- Extensive, (sub-)total sampling is key to correct evaluation of tumour size, stage and grade of tumour regression.