Immunohistochemistry for problem solving (and causing problems)

Cecily Quinn MD, FRCPath, FRCPI, FFPath

Clinical Professor, School of Medicine, University College Dublin & Consultant Histopathologist, Irish National Breast Screening Programme, St. Vincent's University Hospital, Dublin, Ireland

John Azzopardi

INVASIVE TUMOUR TYPE

LVI or DCIS with retraction ?

GLANDULAR & PAPILLARY LESIONS

EVALUATION OF METASTASES

Antibodies for diagnosis

- Myoepithelial cell markers p63, SMM-HC, Calponin, SM actin
- Cytokeratin family
 AE1/3, Cam 5.2, CK5/6, CK7, CK20 etc
- E-cadherin
- Breast specific antibdies
 ER, PR, Gata 3, GCDFP-15, mammoglobin
- Others

B-catenin, CD34 etc

Benign vs malignant glandular lesions

Radial scar

Nipple duct adenoma

Mimics carcinoma

- Ulcerated nipple clinically
- Infiltrative lesion microscopically

Tubular carcinoma

ER

- Single cell layer
- Apical snouts
- Extend into fat

Microglandular adenosis

MGA = low grade triple negative tumour with potential to progess

Myoepithelial cell markers

Marker	Sensitivity	Specificity
p63*	Excellent	Excellent
SM actin**	Good	Poor
Calponin**	Excellent	Poor
SM myosin**	Good	Excellent

* May be difficult to see due to me cell attenuation around enlarged ducts
** Myofibroblast staining

Calponin

3

Papillary lesions

Intraduct papilloma

Encapsulated papillary carcinoma

No ME cells lining fv cores +/- at periphery

Solid papillary carcinoma

No ME cells within lesion +/- at periphery

Encapsulated papillary carcinoma Dimorphic variant

- Epithelial cells in direct contact with fibrovascular cores morphologically different - 'globoid'
- May mimic ME cells
- Erroneous diagnosis of benign papilloma
- •ME marker negative

UDH versus ADH/DCIS

The distinction between ADH and DCIS relies on morphology and not on IHC

DCIS in TDLU

Sclerosing adenosis vs invasive carcinoma

Nodular arrangement at low power

DCIS in sclerosing adenosis vs invasive carcinoma

DCIS in sclerosing adenosis vs invasive carcinoma

DCIS vs invasive carcinoma

Reduced expression of DCIS associated MEC vs normal MEC

Myoepithelial cell marker	% DCIS cases with reduced expression (n = 56)
Smooth muscle actin	0%
Calponin	16%
SMM HC	76%
p63	10%

Phenotypic Alterations in Ductal Carcinoma In Situ-associated Myoepithelial Cells: Biologic and Diagnostic Implications

Justin B. Hilson; Stuart J. Schnitt; Laura C. Collins

Am J Surg Pathol 2009

% DCIS vs % invasive carcinoma

Quality Assurance in Breast Pathology

Lessons Learned From a Review of Amended Reports

Case No.	Specimen	Original Diagnosis	Amended Diagnosis	Discoverer	Mechanism of Discovery	Time to Discovery, o
Downgrade	ed diagnoses					
1	Core biopsy	IDC, DCIS	DCIS in sclerosing adenosis	Pathologist	Surgical excision	35.1
2*	Core biopsy	IDC	DCIS in sclerosing adenosis	Pathologist	Surgical excision	78.9
3	Excision	IDC	DCIS in sclerosing adenosis	Pathologist	Predictive factor reporting	6.2
Upgraded	diagnoses					
4	Core biopsy	DCIS	IDC	Pathologist	Predictive factor reporting	4.1
5	Core biopsy	DCIS	IDC, DCIS	Pathologist	Predictive factor reporting	4
6	Mastectomy	DCIS	IDC, DCIS	Pathologist	Predictive factor reporting	3
7	Excision	DCIS	DCIS with microinvasion	Pathologist	Predictive factor reporting	2.1
8	Core biopsy	LCIS	Microinvasive lobular carcinoma	Pathologist	Predictive factor reporting	2
9	Excision	DCIS with microinvasion	IDC, DCIS	Pathologist	Predictive factor reporting	16.8
10	Mastectomy SLNB	No lymph node metastases	Micrometastatic carcinoma	Pathologist	Other ancillary studies	0.3
Changed d	iagnoses					
11	Excision	DCIS in complex sclerosing lesion	ADH in complex sclerosing lesion	Pathologist	Predictive factor reporting	13
12	Re-excision	DCIS	Severe ADH	Pathologist	Predictive factor reporting	3
13	Core biopsy	IDC	DLBCL	Pathologist	Surgical excision	19.9
14	Core biopsy	Fibroadenoma, fat necrosis	Amyloidoma	Pathologist	Intradepartmental consultation	5

Abbreviations: ADH, atypical ductal hyperplasia; DCIS, ductal carcinoma in situ; DLBCL, diffuse, large B-cell lymphoma; IDC, invasive ductal carcinoma; LCIS, lobular carcinoma in situ; SLNB, sentinel lymph node biopsy.

* Cases 2 and 3 represent a core biopsy and a subsequent excision of the same lesion.

Lymphovascular invasion or DCIS with retraction?

Invasive lobular carcinoma

E-cadherin

- Cell adhesion molecule
- Regulated by CDH1 gene
- Loss of expression observed in 85% ILC
- Characteristic dyscohesive cell arrangement
- 15% ILC e-cadherin positive
- Do not change diagnosis!
- Other catenin complex proteins lost
- p120 catenin cytoplasmic staining

Pleomorphic LCIS

Alternatives to primary breast carcinoma

Metastases

Lymphoma

CLUES

- Multiple lesions
- Circumscribed outline
- Unusual morphology
- No DCIS
- Triple negative
- Significant history

Metastases

- o **Melanoma**
- o Lung
- Ovary
- o Sarcoma
- Prostate
- Kidney
- Stomach
- Lymphoma
- Primary
- Secondary

Histopathology

Histopathology 2016, 68, 33-44. DOI: 10.1111/his.12865

REVIEW

An approach to the diagnosis of spindle cell lesions of the breast

Emad A Rakha, Mohammed A Aleskandarany, Andrew H S Lee & Ian O Ellis Department of Histopathology. Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham City Hospital, Nottingham, UK

Rakha E A, Aleskandarany M A, Lee A H S & Ellis I O (2016) Histopathology 68, 33–44. DOI: 10.1111/his.12865

An approach to the diagnosis of spindle cell lesions of the breast

Although most breast spindle cell lesions (BSCLs) are rare, they constitute a wide spectrum of diseases, ranging from reactive processes to aggressive malignant tumours. Despite their varied histogenesis and behaviour, some lesions show an overlap of morphological features, making accurate diagnosis a challenging task, particularly in needle core biopsies. Clinical history and immunohistochemistry can help in making a correct diagnosis in morphologically challenging cases. To make an accurate diagnosis, it is important to maintain a wide differential diagnosis and be familiar with the diverse morphological appearances of these different entities. BSCLs can generally be classified into bland-looking and malignantlooking categories. In the former, the commonest diagnosis is scarring. However, it is important to distinguish low-grade spindle cell metaplastic breast carcinoma from other benign entities, as the management is clearly different. In the malignant category, it is important to differentiate metaplastic carcinoma from other malignant primary and metastatic malignant spindle cell tumours of the breast, such as malignant phyllodes tumour, angiosarcoma, and melanoma. This review focuses on the classification and histological and molecular diagnosis of various BSCLs, with an emphasis on the diagnostic approach, including in core biopsies.

Keywords: breast, core biopsy, diagnosis, immunohistochemistry, spindle cell lesions, update

Immunohistochemistry

- Use a panel of antibodies
- Interpret in the light of morphology and clinical context
- Beware of the pitfalls

Bland looking pure SCLs

Fibromatosis – like MBC

AE1/3

Cytokeratin + p63 positive +/-SMA frequently + *CD34 -ER, PR and Her2 -

Malignant looking pure SCLs

Metaplastic spindle cell carcinoma

Cytokeratin (CK)

- Firstline IHC if considering MBC
- Use a panel of antibodies
- Staining may be focal or absent in mbc p63 useful especially if CK negative Repeat on excision if CK negative on NCB
- MBC may co-express mesenchymal markers
- Focal CK positivity possible in PT stroma and in leiomyosarcoma

Application of Immunohistochemistry in Undifferentiated Neoplasms: A Practical Approach.

Gata -3

- Transcription factor in luminal epithelial cells
- Expressed in <u>90%</u> breast tumours

Also present in

Range of normal tissues Other tumours • Urothelial

- o Renal
- o Mesothelioma
- o Paraganglioma

GCDFP-15

- 15 kDa glycoprotein
- Expressed in <u>50 -70%</u> breast tumours
- Also expressed in
 Skin appendage tumours
 Salivary gland tumours
 Some lung tumours
 Some prostate tumours

- Expression linked to hormone receptors
- Positivity rate higher in luminal & HER2+ tumours compared with triple negative

Mammoglobin

- 10.5 kDa secretory protein
- Expressed in <u>50-70%</u> breast tumours
- Also expressed in
 Skin appendage tumours
 Salivary gland tumours
 Some GYN tumours
 Some melanomas

ER & PR

- Nuclear transcription factors
- Regulate normal breast development
- ER expressed in <u>80%</u> breast tumours
- PR expressed in <u>65%</u>
- Also expressed in Other tumours
 - o Ovary
 - o Endometrium
 - o Stomach
 - o Lung
 - o Thyroid
 - Neuroendocrine tumours

Antibodies in breast carcinoma

Frequently	Sometimes	Usually
positive	Positive	negative
Cytokeratin 7		Cytokeratin 20
ER, PR	S100	HMB45, Melan A
Gata 3	WT1	PAX 8
GCDFP-15	TTF1	Napsin
Mammoglobin		LCA
		PSA

Conclusions

- Immunohistochemistry is very helpful in the diagnosis of breast pathology
- Always begin by carefully evaluating the H&E appearances
- Beware of the IHC pitfalls